Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr Hematol Oncol ; 38(2): 131-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26840079

RESUMO

BACKGROUND: Outcomes for children with high-risk neuroblastoma are poor, and improved understanding of the mechanisms underlying neuroblastoma pathogenesis, recurrence, and treatment resistance will lead to improved outcomes. Aberrant growth factor receptor expression and receptor tyrosine kinase signaling are associated with the pathogenesis of many malignancies. A germline polymorphism in the FGFR4 gene is associated with increased receptor expression and activity and with decreased survival, treatment resistance, and aggressive disease for many malignancies. We therefore investigated the role of this FGFR4 polymorphism in neuroblastoma pathogenesis. MATERIALS AND METHODS: Germline DNA from neuroblastoma patients and matched controls was assessed for the FGFR4 Gly/Arg388 polymorphism by RT-PCR. Allele frequencies were assessed for association with neuroblastoma patient outcomes and prognostic features. Degradation rates of the FGFR4 Arg388 and Gly388 receptors and rates of receptor internalization into the late endosomal compartment were measured. RESULTS: Frequency of the FGFR4 AA genotype and the prevalence of the A allele were significantly higher in patients with neuroblastoma than in matched controls. The Arg388 receptor demonstrated slower degradation than the Gly388 receptor in neuroblastoma cells and reduced internalization into multivesicular bodies. CONCLUSIONS: The FGFR4 Arg388 polymorphism is associated with an increased prevalence of neuroblastoma in children, and this association may be linked to differences in FGFR4 degradation rates. Our study provides the first evidence of a role for FGFR4 in neuroblastoma, suggesting that FGFR4 genotype and the pathways regulating FGFR4 trafficking and degradation may be relevant for neuroblastoma pathogenesis.


Assuntos
Predisposição Genética para Doença/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Polimorfismo de Fragmento de Restrição , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Western Blotting , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de Risco
2.
Methods Mol Biol ; 1270: 115-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25702113

RESUMO

The signaling activity of cell surface localized membrane proteins occurs primarily while these proteins are located on the plasma membrane but is, in some cases, not terminated until the proteins are degraded. Following internalization and movement through the endocytic pathway en route to lysosomes, membrane proteins transit a late endosomal organelle called the multivesicular body (MVB). MVBs are formed by invagination of the limiting membrane of endosomes, resulting in an organelle possessing a limiting membrane and containing internal vesicles. The fate of an internalized membrane protein depends on whether it buds outwardly from the endosomal membrane, promoting recycling and continued signaling, or is internalized into internal MVB vesicles and is ultimately degraded upon MVB-lysosome fusion. The molecular machinery that regulates the separation of membrane proteins destined for degradation from those resulting in surface expression is not well understood.To elucidate the molecular mechanisms that underlie membrane protein sorting, we have reconstituted an endosomal sorting event under cell-free conditions. We took advantage of the itinerary of a prototypical membrane protein, the epidermal growth factor receptor (EGFR) and designed a biochemical monitor for cargo movement into internal MVB vesicles that is generally modifiable for other membrane proteins. Since is it not known how internal vesicle formation is related to cargo sorting, morphological examination using transmission electron microscopy (TEM) allows separate monitoring of vesicle formation. We have determined that MVB sorting is dependent on cytosolic components, adenosine triphosphate (ATP), time, temperature, and an intact proton gradient. This assay reconstitutes the maturation of late endosomes and allows the morphological and biochemical examination of vesicle formation and membrane protein sorting.


Assuntos
Sistema Livre de Células , Corpos Multivesiculares/metabolismo , Proteínas/metabolismo , Animais , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 289(5): 3026-39, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24344129

RESUMO

The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR.


Assuntos
Endossomos/metabolismo , Receptores ErbB/metabolismo , Transporte Proteico/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/fisiologia , Membrana Celular/metabolismo , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteólise , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/química , Ubiquitina Tiolesterase/metabolismo , Complexos Ubiquitina-Proteína Ligase/química , Ubiquitina-Proteína Ligases
4.
Cancer ; 119(4): 915-23, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22990745

RESUMO

BACKGROUND: The UBE4B gene, which is located on chromosome 1p36, encodes a ubiquitin ligase that interacts with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a protein involved in epidermal growth factor receptor (EGFR) trafficking, suggesting a link between EGFR trafficking and neuroblastoma pathogenesis. The authors analyzed the roles of UBE4B in the outcomes of patients with neuroblastoma and in neuroblastoma tumor cell proliferation, EGFR trafficking, and response to EGFR inhibition. METHODS: The association between UBE4B expression and the survival of patients with neuroblastoma was examined using available microarray data sets. UBE4B and EGFR protein levels were measured in patient tumor samples, EGFR degradation rates were measured in neuroblastoma cell lines, and the effects of UBE4B on neuroblastoma tumor cell growth were analyzed. The effects of the EGFR inhibitor cetuximab were examined in neuroblastoma cells that expressed wild-type and mutant UBE4B. RESULTS: Low UBE4B gene expression is associated with poor outcomes in patients with neuroblastoma. UBE4B overexpression reduced neuroblastoma tumor cell proliferation, and UBE4B expression was inversely related to EGFR expression in tumor samples. EGFR degradation rates correlated with cellular UBE4B levels. Enhanced expression of catalytically active UBE4B resulted in reduced sensitivity to EGFR inhibition. CONCLUSIONS: The current study demonstrates associations between UBE4B expression and the outcomes of patients with neuroblastoma and between UBE4B and EGFR expression in neuroblastoma tumor samples. Moreover, levels of UBE4B influence neuroblastoma tumor cell proliferation, EGFR degradation, and response to EGFR inhibition. These results suggest UBE4B-mediated growth factor receptor trafficking may contribute to the poor prognosis of patients who have neuroblastoma tumors with 1p36 deletions and that UBE4B expression may be a marker that can predict responses of neuroblastoma tumors to treatment.


Assuntos
Receptores ErbB/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab , Deleção Cromossômica , Cromossomos Humanos Par 1 , Receptores ErbB/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Resultado do Tratamento , Ubiquitina-Proteína Ligases
5.
Cancer ; 117(22): 5189-202, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21523764

RESUMO

BACKGROUND: The repressor element-1 silencing transcription factor (REST) is a repressor of neuronal genes. Its expression is associated with poor neuronal differentiation in many neuroblastoma patient samples and cell lines. Because retinoic acid promotes neuronal differentiation, the authors postulated that it involves modulation of REST expression. METHODS: The expression of REST and of an S-phase kinase-associated protein 1/cullin 1/F-box (SCF) protein complex that contains the F-box protein ß-transducin repeat-containing protein (ß-TRCP) (SCF(ß-TRCP) ) in neuroblastoma tumor samples and cell lines was analyzed by immunofluorescence and Western blot analysis. SK-N-SH and SK-N-AS cells were treated with retinoic acid and MG-132 to measure proteasomal degradation of REST by Western blot and quantitative real-time polymerase chain reaction analyses. Immunoprecipitation and coimmunoprecipitation assays were done in SK-N-AS cells that were transfected either with a control plasmid or with an enhanced green fluorescent protein-SCF(ß-TRCP) -expressing plasmid. RESULTS: Several neuroblastoma patient samples and cell lines displayed elevated REST expression. Although, REST transcription increased upon retinoic acid treatment in SK-N-SH and SK-N-AS cells, REST protein levels declined, concomitant with the induction of neuronal differentiation, in SK-N-SH cells but not in SK-N-AS cells. MG-132 treatment countered the retinoic acid-mediated decline in REST protein. SCF(ß-TRCP) , a known REST-specific E3-ligase, was poorly expressed in many neuroblastoma samples, and its expression increased upon retinoic acid treatment in SK-N-SH cells but declined in SK-N-AS cells. Ectopic expression of SCF(ß-TRCP) in SK-N-AS cells promoted REST ubiquitination and degradation and neuronal differentiation. CONCLUSIONS: The current results indicated that elevated transcription of REST compounded by its impaired degradation by SCF(ß-TRCP) may contribute to the failure of these tumors to differentiate in response to retinoic acid.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neuroblastoma/patologia , Proteínas Repressoras/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Tretinoína/farmacologia , Linhagem Celular Tumoral , Humanos , Neuroblastoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...